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Abstract. We construct solutions to the chiral Thirring model in the framework of algebraic quantum field
theory. We find that for all positive temperatures there are fermionic solutions only if the coupling constant

is λ =
√

2(2n + 1)π, n ∈ N.

1 Introduction

It is usually taken for granted that fermions should enter
the basic formalism of the fundamental theory of elemen-
tary particles, the ultimate version of this opinion being
Heisenbergs “Urgleichung” [1], in which no bose fields are
present at all. The opposite point of view, namely that the-
ory including only observable fields, necessarily uncharged
bosons, is capable of describing evolution and symmetries
of a physical system, is the kernel of algebraic approach to
QFT, due to Haag and Kastler [2]. Actually, the question
which is thus posed and which is of principal importance
is whether and in which cases definite conclusions about
the time evolution and symmetries of charged fields can be
drawn from the knowledge about the observables that is
gained through experiment. Furthermore, before claiming
that an “Urgleichung” of the type

6∂ψ(x) = λψ(x)ψ̄(x)ψ(x) (1)

determines the whole Universe one should see whether it
determines anything mathematically.

Two–dimensional models offer a possibility to get a
better feeling for these problems due to the bose–fermi
duality which takes place in two–dimensional spacetime.
This phenomenon amounts to the fact that in certain mod-
els formal functions of fermi fields can be written that have
vacuum expectation values and statistics of bosons and
vice versa. The equivalence is understood within pertur-
bation theory: the perturbation series for the so–related
theories are term–by–term equivalent (they may perfectly

a Dedication. F. Schwabl is well–known for his contributions
in condensed matter physics and his book on quantum me-
chanics. However he was also among the pioneers for solving
(1+1)–dimensional quantum field theories and it is with plea-
sure that we dedicate this note to his 60th birthday.

well exist even if the models are not exactly solvable or if
their physical sensibility is doubtful).

There are two facts which make such a duality possi-
ble. First comes the main reason why soluble fermion mod-
els exist in two–dimensions, that is that fermion currents
can be constructed as “fields” acting on the representation
space for the fermions. Also, the “bosons into fermions”
programme rests on the fact that bosons in question are
just the currents and fermions are essentially determined
by their commutation relations with them. Second comes
the observation which has been made in the pioneering
works by Jordan [3] and Born [4]: due to the unbound-
edness from below of the free–fermion Hamiltonian the
fermion creation and annihilation operators must undergo
what we should call now a Bogoliubov transformation
which in addition leads to the appearance of an anoma-
lous term (later called “Schwinger term”) in the current
commutator, that in turn actually enables the “bosoniza-
tion”.

The “fermions into bosons” part of the bose–fermi du-
ality is fairly well established, so that consistent expres-
sions exist for the fermion bilinears that are directly re-
lated to the observables of the theory.

The problem of rigorous definitions of operator–valued
distributions and eventually operators having the basic
properties of fermion fields by taking functions of bosonic
fields is rather more delicate. On the level of operator val-
ued distributions solutions have been given by
Dell’Antonio et al. [5] and Mandelstam [6] and on the
level of operators in a Hilbert space – by Carey and col-
laborators [7,8] and in a Krein space by Acerbi, Morchio
and Strocchi [9].

Our goal is to see what elements are needed to make
a solution of an equation of the type (1) well defined.
We shall not only reduce it to (1+1) dimensions but will
consider only one chiral component (a left or right mover)
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ψ(x), where x stands for t±x . Thus the question is how
one can give a precise meaning to the three ingredients

(a) [ψ∗(x), ψ(x′) ]+ = δ(x−x′),

[ψ(x), ψ(x′) ]+ = 0 CAR

(b) 1
i

d
dxψ(x) = λj(x)ψ(x) Urgleichung

(c) j(x) = ψ∗(x)ψ(x) Current

(2)

Since (2b) involves derivatives of objects which are ac-
cording to (2a) rather discontinuous it is expedient to pass
right away to the level of operators in Hilbert space since
there are plenty of topologies to control the limiting pro-
cedures. In general norm convergence can hardly be hoped
for but we have to strive at least for strong convergence
such that the limit of the product is the product of the
limits. With ψf =

∫∞
−∞ dxf(x)ψ(x), (2a) becomes

[ψ∗
f , ψg ]+ = 〈f |g〉 (3)

for f ∈ L2(R) and 〈.|.〉 the scalar product in L2(R). This
shows that ψf ’s are bounded and form the C∗–algebra
CAR. There the translations x → x+ t give an automor-
phism τt and we shall use the corresponding KMS–states
ωβ and the associated representation πβ to extend CAR.
Though there j = ∞, one can give a meaning to j as a
strong limit in Hβ by smearing ψ(x) over a region ε to
ψε(x) and define

jf =
∫
dxf(x) lim

ε→0
(ψ∗

ε (x)ψε(x) − ωβ(ψ∗
ε (x)ψε(x))) ,

f : R → R

These limits exist in the strong resolvent sense and define
self–adjoint operators which determine with

eijf eijg = e
i

8π

∫
dx(f(x)g′(x)−f ′(x)g(x))eijf+g (4)

the current algebra Ac. Its Weyl structure is the same for
all β > 0 and ωβ extends to Ac.

To construct the interacting fermions which on the
level of distributions look like

Ψ(x) = Z e
iλ
∫ x

−∞ dx′j(x′)

(with some renormalization constant Z) poses two prob-
lems, one infrared and one ultraviolet. For

Ψε,R(x) = eiλ
∫

dx′(ϕε(x−x′)−ϕε(x−x′+R))j(x′),

ϕε(x) :=

 1 for x ≤ −ε
−x/ε for − ε ≤ x ≤ 0

0 for x ≥ 0

neither the limit R → ∞ nor the limit ε → 0 exist even
as weak limits in Hβ . Thus one has to extend π(Ac)′′ to
accomodate this kind of objects.

There are two equivalent ways of handling the infrared
problem. Since the automorphism generated by the uni-
taries Ψε,R(x) converges to a limit γ for R → ∞, one can

form with it the crossed product Āc = Ac
γ
./ Z, so that in

Āc there are unitaries with the properties which the limit
should have. On the other hand, the symplectic form in (4)
and the state ωβ can be defined for the limiting element
Ψε(x). This is what we will do in the text but we also follow
the former route in Appendix B. In any case H̄β assumes

a sectorial structure, the subspaces Ac

n∏
i=1

Ψε(xi)|Ω〉 for

different n are orthogonal and thus may be called n–fold
charged sectors. The Ψε(x)’s have the property that for
|xi − xj | > 2ε they obey anyon statistics with parameter
λ2 and an Urgleichung (2b) where j(x) is averaged over a
region of lenght ε below x.

Removing the ultraviolet cut–off , ε ↓ 0, one could
proceed as before but in this case the sectors abound and
the subspaces AcΨ(x)|Ω〉 become orthogonal for different
x, so H̄β becomes non–separable. To get canonical fields
of the type (3) one has to combine ε ↓ 0 with a field
renormalization Ψε → ε−1/2Ψε such that

lim
ε↓0

ε−1/2
∫
dxf(x)Ψε(x) = Ψf

converge strongly in H̄β and satisfy (2b) in sense of distri-
butions. However, they are not fermions but anyons and
only for λ =

√
2(2n+ 1)π, n ∈ N they are fermions.

Thus we find that there is indeed some magic about the
Urgleichung inasmuch as on the quantum level it allows
fermionic solutions by this construction only for isolated
values of the coupling constant λ whereas classically Ψ(x)

= Z e
iλ
∫ x

−∞ dx′j(x′)
solves (2b) for any λ. This feature can

certainly not be seen by any power expansion in λ.
The current (2c) has been constructed with the bare

fermions ψ and since (2c) is sensitive to the infinite renor-
malization in the dressed field Ψ it is better to replace
(2c) by the requirement that jf is the generator of a local
gauge transformation. Indeed,

eijfΨge
−ijf = Ψeif g (5)

holds and in this sense (2c) is also satisfied.

2 The CAR-algebra, its KMS-states
and associated v. Neumann algebras

We start with the operator-valued distributions ψ(x), x ∈
R which satisfy

[ψ∗(x), ψ(x′)]+ = δ(x−x′). (6)

For f ∈ L2(R) we define the bounded operators

ψf =
∫ ∞

−∞
dxψ(x)f(x) =

∫ ∞

−∞

dp

2π
ψ̃(p)f̃(p),

f̃(p) =
∫ ∞

−∞
dx eipxf(x) (7)
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which form a C*-algebra A characterized by

[ψ∗
f , ψg]+ = 〈f |g〉 =

∫
dxf∗(x)g(x). (8)

We are interested in the automorphisms translation τt and
parity P and the antiautomorphism charge conjugation C:

τtψf = ψft
, ft(x) = f(x− t), Pψf = ψPf ,

Pf(x) = f(−x), Cψf = ψ∗
f . (9)

A inherits the norm from L2(R) such that τt is (point-
wise) normcontinuous in t and even normdifferentiable
for the dense set of f ’s for which

lim
δ↓0

f(x+ δ) − f(x)
δ

= f ′(x)

exists in L2(R)

d

dt
τtψf

∣∣∣∣
t=0

= −ψf ′ . (10)

The τ -KMS-states over A are given by

ωβ(ψ∗
fψg) =

∫ ∞

−∞

dp

2π
f̃∗(p)g̃(p)
1 + eβp

=
∞∑

n=−∞

(−1)n

2π

∫
dxdx′f∗(x)g(x′)
i(x− x′) − nβ + ε

,

ε ↓ 0, (11)

ωβ(ψgψ
∗
f ) = ωβ(ψ∗

fτiβψg).
With each ωβ are associated a representation πβ with
cyclic vector |Ω〉, ω(a) = 〈Ω|a|Ω〉 in Hβ = A|Ω〉 and a
v. Neumann algebra πβ(A)′′. It contains the current alge-
bra Ac which gives the formal expression j(x) = ψ∗(x)ψ(x)
a precise meaning. We first observe

Lemma (1)
If the kernel K(k, k′) : R2 → C is as operator ≥ 0 and
trace class (K(k, k) ∈ L1(R)), then ∀ β ∈ R+

lim
M→±∞

BM := lim
M→±∞

1
(2π)2

∫
dkdk′K(k, k′)

×ψ̃∗(k +M)ψ̃(k′ +M)

=
1

(2π)2

∫
dkdk′ lim

M→±∞
K(k, k′)

×ωβ(ψ̃∗(k +M)ψ̃(k′ +M))

=
{

1
2π

∫
dk K(k, k) for M → +∞

0 for M → −∞
in the strong sense in Hβ .

Remarks (1)
1. Lemma (1) substantiates the feeling that for k > 0

most levels are empty and for k < 0 most are full.
2. BM is a positive operator and by diagonalizing K one

sees
‖BM‖ = ‖K‖1 =

1
2π

∫
dk K(k, k).

Proof. Since the norms of BM are bounded uniformly for
all M , it is sufficient to show strong convergence on a
dense set in Hβ . Furthermore

‖AMa|Ω〉‖2 = 〈Ω|A∗
MAMaτiβa

∗|Ω〉
≤ ‖AMΩ〉‖‖AMaτiβa

∗|Ω〉‖ ∀a ∈ A.
Thus if ‖AM |Ω〉‖ → 0 and ‖AM‖ uniformly bounded, then
AM → 0 since with a ∈ A , ‖aτiβa∗|Ω〉‖ < ∞ are dense in
Hβ . Now

〈Ω|(BM − 〈BM 〉)2|Ω〉 = 〈Ω|B2
M |Ω〉 − 〈Ω|BM |Ω〉2

contains the distributions

〈Ω|ψ̃(k +M)∗ψ̃(k′ +M)ψ̃(q′ +M)∗ψ̃(q +M)|Ω〉
−〈Ω| · |Ω〉 〈Ω| · |Ω〉

=
(2π)2δ(k−q)δ(k′−q′)

(1 + eβ(k+M))(1 + e−β(k′+M))
.

This gives for the operators

〈Ω|B2
M |Ω〉 − 〈Ω|BM |Ω〉2

=
1

(2π)2

∫
dkdk′|K(k, k′)|2

(1 + eβ(k+M))(1 + e−β(k′+M))
. (12)

Since the Hilbert–Schmidt norm
∫
K2 < ∞ is less than

the trace norm and the integrand in (12) for M → ±∞
goes to zero uniformly on compact sets we have established
BM → 〈BM 〉 for M → ±∞.

If
∫ |K|2 keeps increasing with M , then BM − 〈BM 〉

may nevertheless tend to an (unbounded) operator.

Lemma (2)
If

BM =
1

(2π)2

∫
dkdk′f̃(k − k′)Θ(M − |k|)Θ(M − |k′|)

×ψ̃∗(k)ψ(k′)

with f̃ decreasing faster than an exponential and being
the Fourier transform of a positive function, the BM −
ωβ(BM ) is a strong Cauchy sequence for M → ∞ on a
dense domain on Hβ .

Remarks (2)

1. From Remarks (1) we know that ‖BM‖ < 2Mf̃(0) and
f(x) ≥ 0 is not a serious restriction since any function
is a linear combination of positive functions.

2. Since the limit jf is unbounded the convergence is
not on all of Hβ , however since for the limit jf holds
τiβjf = jeβpf , the dense domain is invariant under
jf . Thus we have strong resolvent convergence which
means that bounded functions of BM converge
strongly. Also the commutator of the limit is the limit
of the commutators.
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Proof. As before

〈Ω|(BM ′ −BM − ω(BM ′ −BM ))2|Ω〉
=
∫ ∞

−∞

dkdk′

(2π)2
|f̃(k − k′)|2(1 + eβk)−1(1 + e−βk′

)−1

× [Θ(M ′ − |k|)Θ(M ′ − |k′|)
−Θ(M − |k|)Θ(M ′ − |k′|)]

for M ′ > M . Now with q = k′ − k we have∫ M ′

M

dk

(1 + eβk)(1 + e−β(k+q))
≤
∫ M ′

M

dk e−βk

and similarly for
∫ −M

−M ′ dk. Altogether we get

≤
∫

dq

2π
|f(q)|2 1 + eβ|q|

2
(e−βM − e−βM ′

).

By assumption
∫
dq < ∞ thus ∀ ε > 0 ∃ M such that this

is < ε ∀M ′ > M .
We conclude that the limit exists and is selfadjoint on

a suitable domain. We shall write it formally

jf =
∫ ∞

−∞

dkdk′

(2π)2
f̃(k − k′) : ψ̃(k)∗ψ̃(k′) : (13)

Next we show that the currents so defined satisfy the
CCR with a suitable symplectic form σ [3,10].

Theorem (1)

[jf , jg] = iσ(f, g) =
∫ ∞

−∞

dp

(2π)2
pf̃(p)g̃(−p)

=
i

4π

∫ ∞

−∞
dx(f ′(x)g(x) − f(x)g′(x)).

Proof. For the distributions ψ̃(k) we get algebraically

[ψ̃∗(k)ψ̃(k′), ψ̃∗(q)ψ̃(q′)] = 2π
[
ψ̃∗(k)ψ̃(q′)δ(q−k′)

−ψ̃∗(q)ψ̃(k′)δ(k−q′)
]

and for the operators after some change of variables

1
(2π)3

∫
dkdpdp′f̃(p)g̃(p′)ψ̃∗(p+ p′ + k)ψ̃(k)

×Θ(M − |k|)Θ(M − |p+ p′ + k|)
× [Θ(M − |p′ + k|) −Θ(M − |p+ k|)] .

For fixed p and p′ and M → ∞ we see that the al-
lowed region for k is contained in (M − |p| − |p′|,M) and
(−M,−M + |p| + |p′|). Upon k → k ± M we are in the
situation of Lemma (1), thus we see that the commuta-
tor of the currents (13) is bounded uniformly in M if f̃

and g̃ decay faster than exponentials and converges to the
expectation value. This gives finally∫ ∞

−∞

dp

(2π)2
f̃(p)g̃(−p)

∫
dk Θ(M − |k|) [Θ(M − |k − p|)

−Θ(M − |k + p|)] 1
1 + eβk

M→∞−→
∫ ∞

−∞

dp

(2π)2
pf̃(p)g̃(−p).

Remarks (3)

1. Since the jf ’s satisfy the CCR they cannot be bounded
and it is better to write (13) in the Weyl form for the
associated unitaries

eijf eijg = e
i
2 σ(g,f) eijf+g = eiσ(g,f) eijg eijf .

2. Since jf is selfadjoint, eiαjf generate 1–parameter
groups. They are the local gauge transformations

e−iαjf ψg e
iαjf = ψeiαf g.

3. The state ωβ can be extended to ω̄β over πβ(A)′′ and
τt to τ̄t, τ̄t ∈ Aut πβ(A)′′ with τ̄t jf = jft

. Further-
more ω̄β is τ̄–KMS and is calculated to be (Appendix
A, see also [11])

ω̄β(eijf ) = exp
[
−1

2

∫ ∞

−∞

dp

(2π)2
p

1 − e−βp
|f̃(p)|2

]
.

4. ω̄β is not invariant under the parity P (9). This sym-
metry is destroyed in πβ ,

[j(x), j(x′)] = − i

2π
δ′(x−x′)

is not invariant under j(x) → j(−x). Thus P /∈
Aut πβ(A)′′.

5. The extended shift automorphism τ̄t is not only
strongly continuous but for suitable f ’s also differen-
tiable in t (strongly on a dense set in Hβ)

1
i

d

dt
τ̄te

ijf =
[
jf ′

t
+

1
2
σ(ft, f

′
t)
]
eijft

= eijft

[
jf ′

t
− 1

2
σ(ft, f

′
t)
]

=
1
2
[
jf ′

t
eijft + eijft jf ′

t

]
.

6. The symplectic structure is formally independent on
β, however for β < 0 it changes its sign, σ → −σ, and
for β = 0 (the tracial state) it becomes zero.

3 Extensions of Ac

So far Ac was defined for jf ’s with f ∈ C∞
0 , for instance.

The algebraic structure is determined by the symplec-
tic form σ(f, g) () which is actually well defined also for
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the Sobolev space, σ(f, g) → σ(f̄ , ḡ), f̄ , ḡ ∈ H1, H1 =
{f : f, f ′ ∈ L2} . Also ω̄β can be extended to H1, since
ω̄β(eijf̄ ) > 0 for f̄ ∈ H1. However the anticommuting
operators we are looking for are of the form eijf , f(x) =
2πΘ(x0 −x) and though one can give σ(f, g) a meaning
for such an f , one has in ωβ a divergence for p → 0 and
p → ∞

ωβ(eijΘ ) = exp
[
−1

2

∫ ∞

−∞

dp

p(1 − e−βp)

]
= 0

and thus 〈f |eijΘ |f〉 = 0 , where |f〉 = eijf |Ω〉 are total in
Hβ . Thus this operator acts as zero in Hβ . If one tries to
approximate Θ by functions from H1, the unitaries con-
verge weakly to zero.

Example (1)
Denote

ϕε(x) :=

 1 for x ≤ −ε
−x/ε for − ε ≤ x ≤ 0

0 for x ≥ 0
,

Φδ,ε(x) := ϕε(x) − ϕε(x+ δ) ∈ H1,

lim
δ→∞
ε→0

Φδ,ε(x) = Θ(x).

Then

Φ̃δ,ε(p) =
1 − eipε

εp2 (1 − eipδ)

and

‖Φδ,ε‖2
β =

∫ ∞

−∞

dp

2π
p

1 − e−βp
|Φ̃(p)|2

= 16
∫ ∞

−∞

dp

2π
p

1 − e−βp

sin2 pε/2
ε2p4 sin2 pδ/2,

‖Φ‖2
β ≥ c

∫ 1/δ

0
dp δ2 = cδ

for β/δ, ε/δ � 1 and c a constant. Thus for δ → ∞ ,
‖Φδ‖β → ∞. Also ‖Φδ − f‖β → ∞ since

‖Φδ − f‖β ≥ ‖Φδ‖β − ‖f‖β → ∞ ∀ ‖f‖β < ∞
and thus

|〈Ω|e−ijf eijΦδ |Ω〉| = e− 1
2 ‖Φδ−f‖2

β → 0.

But eijf |Ω〉, ‖f‖β < ∞, is total in Hβ and thus eijΦδ |Ω〉
and therefore eijΦδ goes weakly to zero. However the au-
tomorphism

eijf → e−ijΦδ eijf eijΦδ = eiσ(Φδ,f)eijf

converges since

σ(f, Φδ) = − 1
2πε

(∫ 0

−ε

−
∫ −δ

−ε−δ

)
dx f(x)

δ→∞−→ − 1
2πε

∫ 0

−ε

dx f(x)

ε→0−→ − 1
2π

f(0).

This divergence of ‖Φδ,ε‖ is related to the well–known in-
frared problem of the massless scalar field in (1+1) dimen-
sions and various remedies have been proposed [12]. We
take it as a sign that one should enlarge Ac to some Āc

and work in the Hilbert space H̄ generated by Āc on the
natural extension of the state. Thus we add to Ac the ide-
alized element ei2πjϕε = Uπ and keep σ and ωβ as before.
Equivalently we take the automorphism γ generated by Uπ

and consider the crossed product Āc = Ac
γ
./ Z . There is

a natural extension ω̄ to Āc and a natural isomorphism of
H̄ and Āc|Ω̄〉. Here H̄ is the countable orthogonal sum of
sectors with n particles created by Uπ. Thus,

〈Ω|eijfUπ|Ω〉 = 0 (14)

means that Uπ leads to the one-particle sector, in general

〈Ω|U∗n
π eijfUm

π |Ω〉 = δnm ωβ(γn eijf ).

The quasifree automorphisms on Ac (e.g. τt) can be natu-
rally extended to Āc, τt Uπ = ei2πjϕε,t , ϕε,t(x) = ϕε(x+ t)
and since ϕε −ϕε,t ∈ H1 ∀ t, this does not lead out of Āc.

Uπ has some features of a fermionic field since

σ(ϕε, τtϕε) = −σ(ϕε, τ−tϕε)

=
1
4π

{
1 for t > ε

2t
ε − t2

ε2 for 0 ≤ t ≤ ε
. (15)

More generally we could define Uα = ei
√

2παjϕε and get
from (15) with

sgn(t) = Θ(x) −Θ(−x) =

 1 for t > 0
0 for t = 0

−1 for t < 0.

Proposition (1)

UατtUα = τt(Uα)Uα e
i α sgn(t)/2,

U∗
ατtUα = τt(Uα)U∗

α e
i α sgn(t)/2 ∀ |t| > ε.

Remark (4)
We note a striking difference between the general case
of anyon statistics and the two particular cases – Bose
(α = 2 · 2nπ) or Fermi (α = 2(2n + 1)π) statistics. Only
in the latter two cases parity P (9) is an automorphism of
the extended algebra generated through Uα. Thus P which
was destroyed in Ac is now recovered for two subalgebras.
The particle sectors are orthogonal in any case

〈Ω|U∗n
α e

ijfUm
α |Ω〉 = 0 ∀ n 6= m, f ∈ H1.

Furthermore, sectors with different statistics are orthogo-
nal 〈Ω|U∗

αUα′ |Ω〉 = 0, α 6= α′, thus if we adjoin Uα,∀α ∈
R, H̄β becomes nonseparable.

Next we want to get rid of the ultraviolet cut–off and
let ε go to zero. Proceeding the same way we can extend
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σ and τt but keeping ω the sectors abound. The reason is
that ϕε

ε→0−→ Θ(x) and

‖Θ −Θt‖2 =
∫ ∞

−∞

dp p

1 − e−βp

|1 − eitp|2
p2

is finite near p = 0 but diverges logarithmically for p → ∞.
This means that eijf eijΘ |Ω〉, f ∈ H1 gives a sector where
one of these particles (fermions, bosons or anyons) is at
the point x = 0 and is orthogonal to eijf eijΘt |Ω〉 ∀ t 6= 0.
Thus the total Hilbert space is not separable and the shift
τt is not even weakly continuous. Thus there is no chance
to make sense of d

dtτte
ijΘ .

4 Anyon fields in πω̄(Āc)′′

Next we shall use another ultraviolet limit to construct
local fields which obey some anyon statistics. Of course
quantities like

[Ψ∗(x), Ψ(x′)]α := Ψ∗(x)Ψ(x′)ei 2π−α
4 sgn(x′−x)

+Ψ(x′)Ψ∗(x)e−i 2π−α
4 sgn(x′−x)

= δ(x−x′)

will only be operator valued distributions and have to be
smeared to give operators. Furthermore in this limit the
unitaries we used so far have to be renormalized so that
δ(x−x′) gets a factor 1 in front. A candidate for Ψ(x) will
be (α ∈ (0, 4π))

Ψ(x) := lim
ε→0

n(ε) exp
[
i
√

2πα
∫ ∞

−∞
dy ϕε(x− y)j(y)

]
with ϕε from the example if Sect. 3 and n(ε) a suit-
ably chosen normalization. With the shorthand ϕε,x(y) =
ϕε(x− y) we can write

Ψ∗
ε (x)Ψε(x′) = exp {i 2πασ(ϕε,x, ϕε,x′)}

× exp
{
i
√

2πα jϕε,x′ −ϕε,x

}
,

Ψε(x′)Ψ∗
ε (x) = exp {−i 2πασ(ϕε,x, ϕε,x′)}

× exp
{
i
√

2πα jϕε,x′ −ϕε,x

}
.

We had in (15)

4πσ(ϕε,x, ϕε,x′) = sgn(x− x′)

{
Θ(|x− x′| − ε)

+Θ(ε− |x− x′|) (x− x′)2

ε2

}
=: sgn(x− x′)Dε(x− x′)

and thus

[Ψ∗
ε (x), Ψε(x′)]α = 2n(ε)2

× cos
[
sgn(x− x′)

(π
2

− α

4
(1 −Dε(x− x′))

)]
× exp

[
i
√

2παjϕε,x′ −ϕε,x

]
.

Note that for |x−x′| ≥ ε the argument of the cos becomes
±π/2, so the α–commutator vanishes, in agreement with
Proposition (1). To manufacture a δ-function for |x−x′| ≤
ε we note that cos(...) > 0 and ωβ(eiαj) > 0, so we have
to choose n(ε) such that

2n2(ε)ε
∫ 1

−1
dδ cos

(π
2

− α

4
(1 − δ2)

)
×ωβ

(
exp

[
i
√

2παjϕε,x−εδ−ϕε,x

])
= 1

and to verify that for ε ↓ 0 [ ]α converges strongly to a c-
number. For the latter to be finite we have to smear Ψ(x)
with L2-functions g and h:∫

dxdx′g∗(x)h(x′)[Ψ∗
ε (x), Ψε(x′)]α

=
∫
dxdx′g∗(x)h(x′)2n(ε)2

× cos( ) exp
[
i
√

2παjϕε,x′ −ϕε,x

]
.

This converges strongly to 〈g|h〉 if for ε ↓ 0〈
exp

[
−i

√
2παjϕε,x′ −ϕε,x

]
exp

[
i
√

2παjϕε,y′ −ϕε,y

]〉
−
〈
exp
[
−i

√
2παjϕε,x′ −ϕε,x

]〉〈
exp
[
i
√

2παjϕε,y′ −ϕε,y

]〉
→0

for almost all x, x′, y, y′. Now

〈e−ijaeijb〉 = 〈e−ija〉〈eijb〉 exp
[∫ ∞

−∞

dp p

1 − eβp
ã(−p)̃b(p)

]
.

In our case this last factor is∫ ∞

−∞

dp p

1 − e−βp

|1 − eipε|2
ε2p4 (eipx − eipx′

)(e−ipy − e−ipy′
)

=
∫ ∞

−∞

dp 2(1 − cos p)
p3(1 − e−βp/ε)

(eipx/ε − eipx′/ε)

×(e−ipy/ε − e−ipy′/ε).

For fixed β 6= 0 and almost all x, x′, y, y′ this converges
to zero for ε → 0 by Riemann-Lebesgue. In the same way
one sees that exp

[
i
√

2παjϕε,x+ϕε,x′

]
converges strongly to

zero and that the Ψε,g are a strong Cauchy sequence for
ε → 0. To summarize we state

Theorem (2)
Ψε,g converges strongly for ε → 0 to an operator Ψg which
for α = 2π satisfies

[Ψ∗
g , Ψh]+ = 〈g|h〉, [Ψg, Ψh]+ = 0.

If supp g < supp h,

Ψ∗
gΨh e

i 2π−α
4 + ΨhΨ

∗
g e

−i 2π−α
4 = 0 ∀α.
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Furthermore we have to verify the claim (5) that also
for Ψg the current jf induces the local gauge transforma-
tion g(x) → e2iαf(x)g(x). For finite ε we have

eijfΨε,ge
−ijf = Ψε,ei2πασ(f,ϕε)g

and for ε ↓ 0 we get σ(f, ϕε) → 1
2πf(0) , so that σ(f, τxϕε)

= 1
2πf(x).
To conclude we investigate the status of the “Urgle-

ichung” in our construction. It is clear that the product of
operator valued distributions on the r.h.s. can assume a
meaning only by a definite limiting prescription. Formally
it would be

Ψ(x)Ψ∗(x)Ψ(x) = [Ψ(x), Ψ∗(x)]+Ψ(x) − Ψ∗(x)Ψ(x)2

= δ(0)Ψ(x) − 0.

From Theorem (1) and (10) we know

1
i

∂

∂x
Ψε(x) =

√
2πα
2

[̄(x), Ψε(x)]+,

̄(x) =
1
ε

∫ x

x−ε

dy j(y).

Using jϕ′eijφ = 1
i

∂
∂αe

i α
2 σ(ϕ′,ϕ)eijϕ+αϕ′ |α=0 one can verify

that the limit ε ↓ 0 exists for the expectation value with
a total set of vectors and thus gives densely defined (not
closable) quadratic forms. They do not lead to operators
but we know from Lemma (1) that they define operator
valued distributions for test functions from H1. Thus one
could say that in the sense of operator valued distributions
the Urgleichung holds

1
i

∂

∂x
Ψ(x) =

√
2πα
2

[j(x), Ψ(x)]+. (16)

The remarkable point is that the coupling constant λ
in (1) is related to the statistics parameter α. For fermions
one has a solution only for λ =

√
2π. Of course one could

for any λ enforce fermi statistics by renormalizing the bare
fermion field ψ → √

Z ψ, j → Zj with a suitable Z(λ)
but this just means pushing factors around. Alternatively
one could extend Ac by adding ei

√
2πα jϕε , for all α ∈ R+.

Then one gets in H̄β uncountably many orthogonal sec-
tors, one for each α, and in each sector a different Ur-
gleichung holds. Thus different anyons live in orthogonal
Hilbert spaces and ei

√
2πα jϕε is not even weakly contin-

uous in α. If α is tied to λ it is clear that an expansion
in λ is doomed to failure and will never reveal the true
structure of the theory.

5 Concluding remarks

To summarize we gave a precise meaning to (2a,b,c) by
starting with bare fermions, A = CAR(R). The shift τt is
an automorphism of A which has KMS–states ωβ and as-
sociated representations πβ . In πβ(A)′′ one finds bosonic
modes Ac with an algebraic structure independent on β.

Taking the crossed product with an outer automorphism
of Ac or equivalently augmenting Ac by an unitary oper-
ator to Āc we discover in π̄β(Ac)′′ anyonic modes which
satisfy the Urgleichung in a distributional sense. For spe-
cial values of λ they are dressed fermions distinct from
the bare ones. From the algebraic inclusions CAR(bare)
⊂ πβ(A)′′ ⊃ Ac ⊂ Āc ⊂ π̄β(Āc)′′ ⊃ CAR(dressed) one
concludes that in our model it cannot be decided whether
fermions or bosons are more fundamental. One can con-
struct the dressed fermions either from bare fermions or
directly from the current algebra and our original question
remains open like the one whether the egg or the hen was
first.
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Appendix A
KMS–states – Dirac sea
and the Schwinger term

An equilibrium state of a quantum system at finite tem-
perature T = β−1 is characterized by the KMS–condition

ωβ (τt(A)B) = ωβ(B τt+iβA) (A.1)

with the time evolution τt as an automorphism of the alge-
bra of observables A analytically continued for imaginary
times. Thus, an equilibrium state for a system with an in-
finite number of free bosons can be defined through the
quasifree state over the algebra of smeared creation and
annihilation operators a∗

f , ag,

a
(∗)
f =

1
2π

∫ ∞

−∞
a(∗)(p)f̃ (∗)(p)dp

so that for the non–smeared operators one has

〈a∗(p)a(k)〉 =
2π p δ(p−k)

1 − e−βp
(A.2)

similarly for fermions

〈a∗(p)a(k)〉 =
2π δ(p−k)

1 + eβp
(A.3)

Note that for (A.3) to be a well defined state there is no
need for the Hamiltonian to be bounded from below, in
contrast to the T = 0 case. There, a Bogoliubov transfor-
mation is needed to ensure semiboundedness for the free
Hamiltonian. As has been realized already in the thirties
[3,4], such a manipulation (corresponding to filling in the
Dirac sea) leads to an anomalous term in the current com-
mutator – Theorem (1). One could be therefore misleaded
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to think that the KMS–state ignores this anomaly. Actu-
ally, it is the other way round – the KMS–state automat-
ically takes care for the Dirac vacuum since for negative
momenta (A.3) transforms into

〈a(p)a∗(k)〉 =
2π δ(p−k)
1 + e−βp

and this corresponds exactly to exchanging the roles of
creation and annihilation operators.

Indeed, in momentum space, with

ρ(p) =
∫ ∞

−∞
ψ∗(x)ψ(x)eipxdx

=
1
2π

∫ ∞

−∞
a∗(k + p)a(k)dk

ρ(−p) =
∫ ∞

−∞
ψ∗(x)ψ(x)e−ipxdx

=
1
2π

∫ ∞

−∞
a∗(k)a(k + p)dk

p always positive, one gets (:ρ := ρ− 〈ρ〉)

〈:ρ(−p) ::ρ(p′) :〉 =
∫ ∞

−∞

dkdk′

(2π)2
〈a∗(k)a(k′)〉

×〈a(k + p)a∗(k′ + p′)〉
=
∫ ∞

−∞

dk δ(p−p′)
(1 + eβk)

(
1 + e−β(k+p)

)
=

δ(p−p′)
β (1 − e−βp)

ln
1 + e−βk

eβp + e−βk

∣∣∣∣∞
−∞

=
p

1 − e−βp
δ(p−p′)

= F (p) δ(p−p′) (A.4)

Then with the representation πβ the following KMS–state
over the observables algebra Ac is accociated

ωβ(eijf ) = exp

{
−1

2

∫ ∞

−∞

dp

(2π)2
p

1 − e−βp
|f̃(p)|2

}
as follows from the general form of KMS–states over a
Weyl algebra [13].

Similarly,

〈:ρ(p′) ::ρ(−p) :〉 = − p

1 − eβp
δ(p−p′)

= F (−p) δ(p−p′) (A.5)

For F (p) the following relation holds

F (−p) = e−βp F (p) > 0 ∀p ∈ R (A.6)

With τtρ(p) = eiptρ(p) −→ eβpρ(p) and (A.6), validity of
the KMS–condition, (A.1), is verified

〈:ρ(−p) :: τiβρ(p′) :〉 = e−βpF (p)δ(p−p′) = F (−p)δ(p−p′)
= 〈:ρ(p′) ::ρ(−p) :〉

So, (A.4), (A.5) correspond to a KMS–state over a bosonic
algebra and are both temperature dependent. This is not
the case for the commutator itself

〈[ρ(p), ρ(−p′)]〉 = F (p)
(
1 − e−βp

)
δ(p−p′) = p δ(p−p′)

This is the well–known result from the T = 0 case. Thus,
the KMS–state for β > 0 is by construction associated
with the Dirac vacuum and the current anomaly is recov-
ered but it does not depend on the temperature (see also
[14]) despite the fact that the correlator functions do.

Appendix B
Non–commuting fields
through crossed products

The idea that the crossed product C∗–algebra extension is
the tool that makes possible construction of fermions (so,
unobservable fields) from the observable algebra has been
first stated in [15]. There, the problem of obtaining differ-
ent field groups has been shown to amount to construction
of extensions of the observable algebra by the group duals.
Explicitly, crossed products of C∗–algebras by semigroups
of endomorphisms have been introduced when proving
the existence of a compact global gauge group in parti-
cle physics given only the local observables [16]. Also in
the structural analysis of the symmetries in the algebraic
QFT [2] extendibility of automorphisms from a unital C∗–
algebra to its crossed product by a compact group dual
becomes of importance since it provides an analysis of
the symmetry breaking [17] and in the case of a broken
symmetry allows for concrete conlusions for the vacuum
degeneracy [18].

The reason why a relatively complicated object – crossed
product over a specially directed symmetric
monoidal subcategory EndA of unital endomorphisms of
the observable algebra A, is involved in considerations in
[18] is that in general, non–Abelian gauge groups are en-
visaged. For the Abelian group U(1) a significant simpli-
fication is possible since its dual is also a group – the
group Z. On the other hand, even in this simple case the
problem of describing the local gauge transformations re-
mains open. Therefore in the Abelian case consideration
of crossed products over a discrete group offers both a
realistic framework and reasonable simplification for the
analysis of the resulting field algebra. We shall briefly out-
line the general construction for this case, for more details
see [19].

We start with the CCR algebra A(V0, σ) over the real
symplectic space V0 with symplectic form σ, (13), gener-
ated by the unitaries W (f), f ∈ V0 with

W (f1)W (f2) = eiσ(f1,f2)W (f1 + f2),
W (f)∗ = W (−f) = W (f)−1.

Instead of the canonical extension Ā(V, σ̄), V0 ⊂ V [9], we
want to construct another algebra F , such that CCR(V0)
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⊂ F ⊂ CCR(V) and we choose V0 = C ∞
0 , V = ∂−1C ∞

0 .
Any free (not inner) automorphism α, α ∈ AutA defines
a crossed product F = A α

./ Z . This may be thought as
(see [20]) adding to the initial algebra A a single unitary
operator U together with all its powers, so that one can
formally write F =

∑
n AUn , with U implementing the

automorphism α in A, αA = U AU∗, ∀A ∈ A. Operator
U should be thought of as a charge–creating operator and
F is the minimal extension – an important point in com-
parison to the canonical extension which we find superflu-
ous, especially when questions about statistical behaviour
and time evolution are to be discussed. With the choice

αW (f) = eiσ(ḡ,f)W (f), ḡ ∈ V\V0, V0 ⊂ V (B.1)

and identifying U = W (ḡ) , F is in a natural way a sub-
algebra of CCR(V).

If we take for A the current algebra Ac and for U –
the idealized element Uπ to be added to it, we find an ob-
vious correspondence between the functional picture from
Sect. 3 and the crossed product construction. However, in
the latter there is an additional structure present which
makes it in some cases favourable. Writing an element
F ∈ F as F =

∑
nAnU

n, An ∈ A , we see that it is
convenient to consider F as an infinite vector space with
Un as its basic unit vectors and An =: (F )n as components
of F . The algebraic structure of F implies that multipli-
cation in this space is not componentwise but instead

(F.G)m =
∑

n

Fn α
nGm−n.

Given a quasifree automorphism ρ ∈ AutA, it can be
extended to F iff the related automorphism γρ =
ραρ−1α−1 is inner for A. Since γρ is implemented by
W (ḡρ−ḡ), this is nothing else but demanding that ḡρ−ḡ ∈
V0 and this is exactly the same requirement as in the func-
tional picture. This appears to be the case for the space
translations and also for the time evolution, but in the
absence of long–range forces [19].

Also a state ω(.) over A together with the representa-
tion πω associated with it through the GNS–construction
can be extended to F . The representation space of F can
be regarded as a direct sum of charge–n subspaces, each
of them being associated with a state ω ◦ α−n and with
H0, the representation space of A, naturally imbedded in
it. Since ω is irreducible and ω ◦ α−n not normal with re-
spect to it, the extension of the state over A to a state
over F is uniquely determined by the expectation value
with |Ω0〉 = |ω〉 in this representation

〈Ωk|W ∗(f)W (h)W (f)|Ωn〉 = δkn e
−iσ(f+nḡ,h)ω(W (h))

where Uk|Ω〉 := |Ωk〉, 〈Ωk|Ωn〉 = δkn . This states nothing
but orthogonality of the different charge sectors, the same
as in the functional description, (14).

In the crossed product gauge automorphism is natu-
rally defined with

γν U
n = e2πiνnUn, γν W (f) = W (f) (B.2)

Thus for the representation πΩ one finds

γν

(
|F (f)(k)〉

)
= γν (W (f)|Ωk〉) = e2πiνkW (f)|Ωk〉,

that justifies interpretation of the vectors |F (f)(k)〉 as
belonging to the charge–k subspace. However, A is a sub-
algebra of F for the gauge group T = [0, 1), while it is
a subalgebra of CAR for the gauge group T ⊗ R. Thus
the crossed product algebra so constructed, being really
a Fermi algebra, does not coincide with CAR but is only
contained in it. In other words, such a type of extension
does not allow incorporation also of local gauge transfor-
mations which are of main importance in QFT.

Therefore we need a generalization of the construction
in [19] which would describe also the local gauge trans-
formations. The most natural candidate for a structural
automorphism would be

αḡx
W (f) = ei

∑K

n=0
f(n)(x)W (f). (B.3)

However, it turns out that only for K = 0 the crossed
product algebra so obtained allows for extension of space
translations as an automorphism of A – the minimal re-
quirement one should be able to meet. Already first deriva-
tive gives for the zero Fourier component of the difference
ḡxδ

− ḡx an expression of the type
∫
y−1δ(y)dy, so it drops

out of C ∞
0 . So, the automorphism of interest reads

αḡx
W (f) = eif(x)W (f) (B.4)

and can be interpreted as being implemented by W (ḡx)
with ḡx = 2π Θ(x−y). Correspondingly, the operator we
add to A through the crossed product is

Ux = e
i2π
∫ x

−∞ j(y)dy
. (B.5)

Compared to [19] this means an enlargment of the test
functions space not with a kink but with its limit – the
sharp step function. In a distributional sense it still can
be considered as an element of ∂−1V0 for some V0 since
the derivative of ḡx has bounded zero Fourier component.
Similarly, the extendibility condition for space translations
is found to be satisfied, ḡxδ

−ḡx ∈ V0 so that in the crossed
product shifts are given by

τ̄xδ
Ux = Vxδ

Ux, Vxδ
= W (ḡxδ

− ḡx). (B.6)

Note that shifts do not commute with the structural au-
tomorphism αḡx

, τxδ
αḡx

W (f) 6= αḡx
τxδ

W (f). Since

σ(ḡx, ḡxδ
) = −πsgn(δ), (B.7)

already the elements of the first class are anticommuting
and we identify Ux =: ψ(x). Then (B.4) (after smearing
with a function from C ∞

0 ) is nothing else but (5), i.e. the
statement (or requirement) that currents generate local
gauge transformations of the so–constructed field. Any
scaling of the function which defines the structural au-
tomorphism αḡx

destroys this relation and fields obeying
fractional statistics are obtained instead. This is effectively
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the same as adding to the algebra A the element Uα with
α = 2πµ, µ being the scaling parameter.

However, the crossed product offers one more interest-
ing possibility: when for the symplectic form in question
instead of (B.7) (or its direct generalization σ(ḡx, ḡxδ

) =
(2n+ 1)π, n ∈ Z ) another relation takes place, σ(ḡx, ḡxδ

)
= (2n+ 1)/n̄2 for some fixed n̄ ∈ Z, the crossed product
acquires a zone structure, with 2nn̄–classes commuting,
(2n+1)–classes anticommuting and elements in the classes
with numbers m ∈ Z/Zn̄ obeying an anyon statistics with
parameter r =

√
2n+ 1m/n̄ . So, fields with different sta-

tistical behaviour are present in the same algebra, however
the Hilvbert space remains separable (which would not be
the case if non–Abelian group has been considered).

We want to emphasize that relation of the type ψ(x+
δx) = Ux+δx may be misleading, the latter element ex-
ists in the crossed product only by (B.6), so that for the
derivative one finds

∂ψ(x)
∂x

:= lim
δx→0

ψ(x+ δx) − ψ(x)
δx

= lim
δx→0

1
δx

(Vxδ
Ux − Ux)

= lim
δx→0

1
δx

(
ei 2π δx j(x) − 1

)
Ux

= 2π i j(x)Ux =: 2π i j(x)ψ(x). (B.8)

This, together with (10) gives for the operators

iψf ′ = ψf jΘ′ . (B.9)

Note that in the crossed product, which can actually be
considered as a left A–module, equations of motion (B.8),
(B.9) appear (due to this reason) without an antisym-
metrization, which was the case with the functional real-
ization, (16), but otherwise the result is the same. There-
fore the scaling sensitivity of the crossed product field al-
gebra is another manifestation of the quantum “selection
rule” for the value of λ in Urgleichung (2b).
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